Pseudo-algebraically closed fields over rational function fields
نویسندگان
چکیده
منابع مشابه
Pseudo Algebraically Closed Fields over Rings
We prove that for almost all σ ∈ G(Q)e the field Q̃(σ) has the following property: For each absolutely irreducible affine variety V of dimension r and each dominating separable rational map φ: V → Ar there exists a point a ∈ V (Q̃(σ)) such that φ(a) ∈ Zr. We then say that Q̃(σ) is PAC over Z. This is a stronger property then being PAC. Indeed we show that beside the fields Q̃(σ) other fields which ...
متن کاملPSEUDO ALGEBRAICALLY CLOSED FIELDS OVER RINGSbyMoshe
We prove that for almost all 2 G(Q) e the eld ~ Q() has the following property: For each absolutely irreducible aane variety V of dimension r and each dominating separable rational map ': V ! A r there exists a point a 2 V (~ Q()) such that '(a) 2 Z r. We then say that ~ Q() is PAC over Z. This is a stronger property then being PAC. Indeed we show that beside the elds ~ Q() other elds which are...
متن کاملOn Pseudo Algebraically Closed Extensions of Fields
The notion of ‘Pseudo Algebraically Closed (PAC) extensions’ is a generalization of the classical notion of PAC fields. In this work we develop a basic machinery to study PAC extensions. This machinery is based on a generalization of embedding problems to field extensions. The main goal is to prove that the Galois closure of any proper separable algebraic PAC extension is its separable closure....
متن کاملMcKay correspondence over non algebraically closed fields
The classical McKay correspondence for finite subgroups G of SL(2,C) gives a bijection between isomorphism classes of nontrivial irreducible representations of G and irreducible components of the exceptional divisor in the minimal resolution of the quotient singularity A2C/G. Over non algebraically closed fields K there may exist representations irreducible over K which split over K. The same i...
متن کاملNoetherian algebras over algebraically closed fields
Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1983
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1983-0681825-4